
NASA/TM-2001-210931

Automatic Overset Grid Generation with Heuristic

Feedback Control

Peter 1. Robinson

Ames Research Center, Moffett Field, California

National Aeronautics and

Space Administration

Ames Research Center

Moffett Field, California 94035-1000

I

November 2001

Acknowledgments
I would like to thank Dr. William Van Dalsem and Dr. Eugene Tu for having the foresight and perseverance to fund

this collaboration between artificial intelligence technologists and computational aerodynamicists. This work was
funded under NASA Aero IT Base (510). I would also like to thank Dr. Michael Lowry and Dr. Goetz Klopfer for

their vision and support. In addition I would like to thank Jeff Onufer, Dr. Donovan Mathias and Dr. Yehia Rizk for

their patience in explaining structured Grid generation to me. In memory of Dr. Herbert Kay.

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

Available from:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

(703) 487-4650

Automatic Overset Grid Generation

with Heuristic Feedback Control

Peter I. Robinson

QSS Group
NASA Ames Research Center

Moffett Field CA 94035

robinson@ptolemy, arc. nasa. gov

November 5, 2001

Abstract

An advancing front grid generation system for structured Overset grids is presented.

The gri d generation system automatically modifies Overset structured surface grids and

control lines until user-specified grid qualities are ar.hieved. The system is demonstrated

on two examples. The first example refines a space shuttle fuselage control line until global

truncation error is achieved. The second example advances, from control lines, the space

shuttle orbiter fuselage top and fuselage side surface grids until proper overlap is achieved.

The system generates surface grids in minutes for complex geometries.

The grid generation system is implemented as a heuristic feedback control (HFC)

expert system which iteratively modifies the input specifications for Overset control line

and surface grids. It is developed as an extension of modern control theory, production

rules systems and subsumption architectures. The methodology provides benefits over

the full knowledge lifecycle of an expert system for knowledge acquisition, knowledge

representation and knowledge execution. The vector/matrix framework of modern control

theory is used to systematically acquire and represent expert system knowledge. Missing

matrix elements imply missing expert knowledge. The execution of the expert system

knowledge is performed through symbolic execution of the matrix algebra equations of

modern control theory. The dot product operation of matrix algebra is generalized for

heuristic symbolic terms. Constant time execution is guaranteed.

A compilation of the grid heuristics for the Overset domain as well as a users manual

are provided.

Contents

1 Executive Summary 3

2 Motivation 4

3 Grid Controller Overview 5

Related Work: Grid Generation 7

4.1 Grid Controller ?

4.2 Overset Grid Generation Systems 8

4.3 Other Systems 9

5 Expert System: Conceptual Description 10

6 Grid Control Laws: Expert System Heuristics 11

6.1 Gain Matrix Elements (k_j): Solving for ulj 14

7 Heuristic Feedback Control (HFC) Theory 14

7.1 Define Variables for Objectives, Sensors, States and Actions 14
7.2 Determination of the Transfer Function or Gain Matrix 15

7.2.1 K Matrix Extensions 17

Related Work: AI 18

8.1 Conventional and AI Feedback Control Systems 19

8.1.1 Modem Control Theory 19

8.1.2 Early Expert Systems 20

8.1.3 Heuristic Classification and Model-Based Reasoning 21
8.1.4 Subsumption 21

8.2 Knowledge Acquisition 22

8.3 Concept Maps and Concept Graphs 22

9 Conclusions and Future Work 23

10 Acknowledgements

A Grid Qualities: State Variables(_)

23

27

C Users Manual 33

C.1 Input File Specification 33

C.2 Outfile Directory Structure 34

B K Matrix Element Definitions 28

1 Executive Summary

This paper presents a closed-loop control, expert system application in the domain of automatic

structured Overset surface grid generation. Automation of the surface grid generation process

will significantly reduce the time and cost required to develop surface grids for aerospace

vehicles (Fig. 1). In addition, a theory of heuristic feedback control (HFC) for developing

and delivering closed-loop control expert systems is also presented. The primary benefit of

the theory will be to reduce the time and cost many expert system developers experience

addressing the knowledge acqusition bottleneck. Additional knowledge representation and

execution benefits are also presented.

The grid generation system provided the first applications of automatically controlling,

through heuristic feedback control methods, Overset grid tools SRAP and SURGRD. The

system is demonstrated on two representative grid generation problems. The first problem
shows the results of the grid controller iteratively modifying a control line (Fig. 4). The

second problem shows the results of the grid controller marching two space shuttle surface

grids together until proper overlap is achieved (Fig. 5). The performance of the grid controller
marching two space shuttle surface grids can be seen in Fig. 6. The automatic grid generation

software system was developed by formalizing over 30 domain heuristics. The domain heuristics

for the grid controller are ennumerated in Appendix A.

CAD 1_ I PDE

Model :Simulation __ Design I
Evaluation

Figure1 Conceptualdesignofan aerospacevehicleisafourstepprocess.CAD models areconstructed

from requirements.Structuredgridsaregeneratedabout the CAD models.Simulationsare run over

the grids.Simulationresultsareused toevaluatethe conceptualdesign.Reduction inthe time and

costfordevelopingOversetstructuredsurfacegridsisaccomplishedthroughautomation.

The execution of the grid controller system follows a feedback control cycle (Fig. 2). The

algorithm is based on the insight that the feedback process which grid designers utilize to

design grids is an instance of a feedback control system (Fig. 3). Given an input file from

the user (Fig. 7), on each iteration, the grids are sensed (Fig. 8). Automatic grid quality

routines SGQ 1 and OLGQ 2 derive grid quality state variables (Fig. 9, left) from grid sensors.

The grid qualities are matched against grid heuristics (Fig. 10). The matched grid heuristics
determine the next grid actions (Fig. 9, right). The grid actions are automatically compiled

into input specification files for the control line and surface grid generation tools. These tools

are executed to generate new control lines and surface grids. The process repeats until the

user defined surface grid and control line objectives are achieved. The grid controller algorithm

which encodes the grid heuristics is seen in Fig. 11.

This paper demonstrates that the feedback control machinery of modern control theory

[5, 38] can be generalized for heuristic systems. The benefits are realized throughout the knowl-

edge life-cycle of the expert system for knowedge acquisition, representation amd execution.

The knowledge acquisition framework helps expert system developers extract domain knowl-

1Goetz Klopfer, Jeff Onufer

2Jeff Onufer, Goetz Klopfer, Peter Robinson

edge in a systematic manner [39] (Section 7). The knowledge representation framework helps

expert system developers represent and organize the heuristic knowledge using rules imbedded

in matrices. Knowledge execution of the grid control laws is accomplished through matrix

algebra operations. The dot product operation required to perform matrix multiplication on

numeric terms is generalized from a literal sum of product terms to an abstract combination

of rule applications. Constant time knowledge execution guarantees can be made due to the

deterministic nature of matrix dot product operations.

Grid
Controller

I CADModel

gnd qualities gridactions

Simulation

Design

Evaluation

+ II
Figure 2 The grid controller modifies structured grids before the simulation process in order to reduce
the number of mathematical "artifacts" introduced into simulation caused by discontinuities and other

grid conditions. A reduction in the number of mathematical "artifacts", by ensuring that grids meet
grid quality setpoints, will reduce the number of iterations required to evaluate an aerospace vehicle
design.

I GridController I

grd qualities

controlling Iprocess

sense act

Figure 3 The grid controller is an example of a generalized feedback controller. The grid controller
is situated in an environment of structured grids. Sensing is analogous to determining grid qualities,
while acting is analogous to modifing grid parameters.

2 Motivation

There are two motivations for this work. First, to reduce the time and costs for designing

aerospace vehicles, and second to reduce the time and costs for developing closed-loop expert

SuccessiveIterationsoftheGridControllerinControlLineMode
iteration 1

J" iterLtion 2

...-_l'fJ_/_ iter.tion 3

_.Ir ii'" .._r fill iteration 4

_.It" ..At _ii j-/ ..- ._ll iterLtion 5

I- r-41--'_t "" aliil_llll'i_Ir I'* It"'" 1"_Ir _2r jr- I" iterition 9

w._....r _l.l-mrl'__slnsll _rir _11 _,.r'" ._11 ir,I _ _,It _ iteration 10

• _" _'_ irirl_m_lll--, r .w'" It" l_s i.lr =m iterstion II

__._411._11_41_41.1_ al.ltllllsr----mlll4r_ 4r "''It ir "'l" --, 41_1 --.-I "m ,_rl_ll iterlbtion 12

I_ll..I_r-_D III tw- _ldlal -- .ll_. I ir j_- r !-
4r.lr _l'lr]stir --.w" ," l" --F--r w iterstion 13

_,_l_m"m--_ll_ -sl im I.w m it, "f .m w u

_41 i. ir_ll_ 14rlll..,,ii r 4rlr_ it. 4r ir_Ir

• • .I-.41 "i-lrl" IrlilllB_'- _1141_1 _lr ur _l,4r"

_-I _4r_41__1. _1_ @ Ir1¢41 irliillillr'a_ll_l I ir_r _lr

it_l.4r • .4¢_41 _ •

if_ I -I_ .It-

Figure 4 The grid controller iteratively modifies the fuselage side control line of the space shuttle orbiter,
by iteratively generating an SRAP input specification which, when executed by SRAP, modifies the
control line. Modifications include increasing the number of points as well as changing the spacing in

order to achieve a user specified maximum truncation error of .004.

systems.
Reductions in time and cost for aerospace design are accomplished through the automation

of the surface grid generation component of the design process. This requires grid generators

which rapidly and automatically generate grids about the CAD geometry and flow features

of the aerospace design. It also requires grids which support efficient and accurate simulation
results. For complex griding tasks no single grid tool [28] will achieve both. Unstructured grid

generators meet the first property but since unstructured grids do not follow the CAD and

flow field geometry, solutions may not be efficient and accurate. On the other hand, structured

grid generators generate grids which meet the second property but have significant challenges

fully automating the surface grid generation process. The challenge is to develop a hybrid

closed-loop expert system controller which meets both properties.
Reductions in time and cost for developing closed-loop expert systems are accomplished

by the development of a methodology to reduce the knowledge acquisition bottleneck many
automation projects experience. This requires methods which can symbolically reason over the

axioms and propositions in a domain as well as methods which can guarantee systematic cover-

age of the domain knowledge. Methods from artificial intelligence provide inference procedures

and qualitative reasoning methods for symbolic reasoning over complex domains. Methods
from modern control theory provide quantitative vector/matrix tools to develop closed-loop

process controllers and ensure systematic coverage of domain knowledge. The challenge is to

develop a hybrid grid generation system which integrates the benefits of AI and conventional

modelling methodologies.

3 Grid Controller Overview

The grid generation system automatically generates Overset structured grids according to a
schedule of ordered tasks provided by the user as input to the grid controller (Fig. 7). Each

task specifies four classes of information, namely: grid setpoints, type of control, number of

SuccessiveIterationsof the Grid Controller in Surface Marching Mode.

iteration 1 Iteration 2 Iteration 3 Iteration 4

Iteration 5 Iteration 6 Iteration 7 Iteration 8

Figure 5 Two Overset structured grids corresponding to the fuselage top and fuselage side control lines
are grown from control lines on a CAD model of the shuttle orbiter. The grids were grown through
an iterative feedback process until overlap is achieved.

controller iterations and the initial grid states (see Appendix C for details). Tasks allow the

user to decompose a grid generation problem into logical components. For example, a user

may grow a subset of grids which cover smooth regions of the CAD model as its first task in

the grid schedule. Once these grids are defined, they provide overlap foundation for generating

grids around CAD discontinuities with additional tasks.

At each iteration, the grid controller senses the grids to determine the state variables or grid

qualities (Fig. 9, left). Given grid setpoints, it computes the differences between the grid state

variables and the grid setpoints. The differences drive grid control laws (Fig. 10) to determine

the next grid actions (Fig. 9, right). The actions are converted into grid input specification files

to be automatically executed by Overset grid generators SRAP and SURGRD. This process
continues until the grid setpoints are achieved, local optima are achieved or a fixed number of

iterations are completed.

The grid observations are shown in Fig. 8. The set of points and lines which connect

the points define the primitive data structure of the grids. Grid generation tools modify the

number of points, the position of points and the lines between points. Certain configurations of

grid observations are called grid qualities. These visual predicates provide aggregate measures

of the grids. Eight different grid qualities (Fig. 9, left) are utilized by the grid controller. They

are divided into two categories: unary grid measures and binary grid measures. The unary

grid measures are stretching ratio, truncation error, jacobians, coverage and controllability.

The binary grid measures are overlap, relative volume and cell difference. A more detailed

explanation of the grid qualities can be found in Appendix A. The grid controller can take

seven different classes of grid actions (Fig. 9, right) which are divided into two categories:

surface grid actions and control line actions. The surface grid actions modify line lengths, the

number of lines, the line spacing, and grid side boundary conditions. The control line actions

modify the number of control line points and point spacing.

6

Grid Controller Performance for Shuttle Fuselage Side and Top Gdds

100 , , , ° , ,

90

70_ ///"///

60 ////.//!

o

N 40

3O

20

0 _ , i , J i
2 3 4 5 6 7 8

Gdd Controller Iterations

Figure 6 Measurement of grid controller performance for the shuttle fuselage side and top surface

grids. Since the control lines of these two grids are approximately parallel, covergence of farfield
overlap occurs on the same iteration.

4 Related Work: Grid Generation

Given a CAD reference surface of the aerospace design, the surface grid generation task for

structured Overset grids can be divided into decomposition and generation tasks. The decom-

position task is to decompose the reference surface into regions of well-behaved surfaces. It is

accomplished by defining control lines on the reference surface. The generation task is to cover
the reference surface. It is accomplished by marching the grids to and from the control lines.

If the control lines represent a sufficient decomposition, the reference surface will be covered

with surface grids which meet user criteria. This paper addresses the generation task.

4.1 Grid Controller

The grid controller is an Overset [2] structured, advancing front, grid generation system that

provides the benefits of automatic surface grid generation from unstructured grid methods
with the benefits of efficient and accurate simulation results of structured grid methods. A

structured advancing front from a control line progressively increments the line lengths of the

structured grid until overlap and other single and binary grid qualities are achieved. It is

analogous to the unstructured advancing front approach, where the grid generator starts from
the boundaries of grids and incrementally adds in triangles until the surface is covered [28].

Grid users at NASA Ames Research Center a have extended the heuristics of the grid con-

troller and scaled its applicability to automatically generate overlapping Overset surface grids

for the space shuttle orbiter model with seventeen grids, as well as the V22 Tiltrotor with

3Donovan Mathias and Jeff Onufer, NASA Ames Research Center

Grid Controller Schedule

Input
1

1,0
30, 4
0.005
3

2

1, 1
20, 1
2
4

Description

Task: modify controllines

grid1 active,grid2 inactive
iterations,controllinemode

truncationerrorsetpoint

use user-specifiedcontrollines

Task: modify surface grids
grid 1 active, grid 2 active
iterations, surface marching mode
overlap setpoint
use current control lines

confmller.inp

Grid Generation System

_I GridController [

grid la grid
ction$

Structured
Grids

Figure7 A gridcontrollerschedule(left)ismade up ofa sequenceoftemporallyorderedtasks.Each

task isdefinedas a specificationto the gridcontrollerof: 1) the gridqualitysetpointsdesiredby
the user,2)the currentgrids,3) the number ofgridcontrolleriterations,and 4) gridinitialization

methods. The gridcontrollerscheduleisthespecificationfileforthegridcontroller.See Appendix C
for a users manual.

fifteen grids. The validation of the automatically generated grids was achieved by running

PDE simulations and deriving realistic flow solutions from the automatically generated grids.

In addition, the grid controller has been integrated with a global optimization framework from

Rutgers University 4. Preliminary results from this collaboration have helped refine the grid
heuristics.

4.2 Overset Grid Generation Systems

In the Overset grid community, there has been a natural progression of increasing automation

for the generation of grids. Initially grid generation tools were called directly through a com-

mand line interface. The Overgrid GUI [8] was developed to allow for rapid input parameter

specification for grid generation tools via GUI templates. It also provides means to execute

Overset grid tools and visualize their results.

An Overset script system [40, 35] has been developed which can assist in the CFD analysis

of high-lift aerospace configurations which contain fuselage, wing, leading and trailing edge
devices, engine, nacelle, strut/pylon and tail components. The script system assumes that

the surface grids are defined. It has benefits of generating "error-free input files" [40] through

reliance on a single repository of common information related to the aerospace design. The

grid controller should be another routine invoked by this script system to generate the surface
grids and proper overlap required by the scripting system. The user defined grid setpoints,

such as overlap and truncation error used by the grid controller, should be set by the script

system due to the heuristics in the script system based on characteristic lengths from CAD

geometry and flow field resolution heuristics from simulation scenario (Reynolds number and

angle of attack) requirements. The grid controller is similar to the script system in that it

maintains a repository of grid knowledge from which error-free input files for SURGRD and

SRAP are generated. The grid controller differs from the script system in that it does not

assume the CAD geometry is made up of a predefined set of aircraft components.

PEGASUS [45] cuts portions of Overset surface grids away to ensure proper overlap between

grids through a process called hole-cutting. This approach produces variable kmax grids which

4Dr. Don Smith, Dr. Khaled Rasheed, and Yah Meng, Rutgers University

Sensors

(O,kmax) (jmax,kmax)

(0,0) (jmax,O)

Grid_Points(g) = {< g,j, k > I

Vj _ Jmax(g) A Vk < Kmax(g)

(Pj,k = point(g, j, k))}

Orid_LineSegments(g) = {< g,j, k >]

Vj <_ Jmax(g) A Vk < Kmax(g)

(line_segment(g, pij, pij + l))
(line_segment(g, Pi,j, Pi+x j)) }

Figure 8 The sensors for each grid (and control line as well) consist of a set of points and the lines
which connect the points.

cannot be generated via the grid controller and SURGRD. Since all of the grids generated via

the grid controller have constant kmax values (number of horizontal lines), to achieve similar

results as PEGASUS, the grid controller drastically varies the etamx (grid line lengths) on
portions of the farfield in order to achieve proper overlap.

The Seam Grid [10] work presents a solution for automatically decomposing and generating

structured surface grids. The concept of a seam grid is introduced to define those hyperbolic

grids close to seam or control lines. These seam grids are intended to cover the discontinuous

regions of a CAD geometry. Given a set of seam grids, an algebraic scheme is utilized to cover

the CAD geometry, stitching the algebraic grids together with the seam grids. SEAMCR [9]

extends the seam grid system by developing an automated method for generating the seam

lines by identfying qualitative features in a CAD geometry. Both [10, 9] rely on an algebraic
scheme using the tool SBLOCK to connect the seam grids over smooth regions of the CAD

geometry. The grid controller differs in that it attempts to fully cover the CAD geometry using

grids grown from the seam lines and does not rely on algebraic grids to connect the seam grids.

It marches the seam grids until undesirable grid qualities such as offbody or negative jacobians

are encountered. The method the grid controller uses to determine the marching distances of

the surface directly addresses the unsolved problem of determining the marching distances for

the seam grids [9]. The grid controller should utilize the SEAMCR tool to generate control
lines.

4.3 Other Systems

Adaptive structured grid generation methods such as Adaptive Mesh Refinement (AMR) [3]

and Adaptive Spatial Partitioning and Refinement(ASPaR) [33] involve the generation and

removal of structured grids at different levels of refinement to address "estimates of numerical

error or regions of high gradients" which are unacceptable. The grid controller cannot add or

remove grids, it can only modify the grids. In addition the grid controller does not modify

grids in response to the results of simulations. It operates exclusively before simulations are
run.

State Variables

_,nr._lon a rn_mureot

(_) error clegmeo_
or_ogonmy of

a mee_,_-eof \ Y\ _

referenc_]

max (d/dj, d_di)

neg_ive i i i x _ i m

Jlmobtan

d3 (_ senseswhen
d_ _ coverage _ gridIs off

reference

cell diff(lllrlce _ grid pe.ramlHecs
csn't be modfied

) duetooth_ grldconstructs
2

__ \ _ _.. o, from_e r_o oftwo

,.,.,,,.,.:,urn.d.,..._\ L. I J . _um. _,o_
. ov_applnoga_c_k_mt_raeoof_._o - \ " _

-- " "" r _ _flZ I r,zLtche41celldiffemrlceS

overt_opinggridceh ! byrelafi-m

Actions

Figure 9 The figure on the left shows the eight state variable parameters or grid qualities used to
characterize Overset structured grids. The figure of the right shows the seven actions or grid actions
available to the grid controller. Section B details each of the grid qualities and grid actions.

The block structured multi-zonal methods of Eiseman [21] automatically generate block

structured grids. Block structured grids however must abut each other such that all grid lines

in one grid meet grid lines in another. This requirement significantly increases the number of

points required for block structured methods. For a complex CAD geometry, there may be
an order of magnitude larger number of points than the same set of grids from the Overset

approach. This is due to the fact that when gridding complex geometries with great disparity

in spacing requirements, Overset methods can overlap grids with varied grid size.

The Amphion [44] program synthesis system was applied to the domain of Overset grid

generation, s The program synthesis system [47] generated input specifications for Chimera grid

tools by reasoning over symbolic propositions defined for the geometric features of aerospace

designs and Overset structured surface grids. The system was never made operational due in

part to the challenges faced of integrating the program synthesis symbolic reasoning system

with numeric grids and generation systems. Specifically, the symbolic geometric propositions

did not have well defined mappings to the vast amount of numeric information represented by

the grids and CAD aerospace model. In addition, the symbolic specifications generated by the

program synthesis system were never grounded in numeric specifications required by the grid

generation tools.

5 Expert System: Conceptual Description

The algorithm which implements the feedback control grid generation system is defined in

Fig. 11. Both the control line and surface grid marching modes of the controller use iterative

repair methods to refine the control lines and surface grids respectively. Their iterative repair

strategies on each iteration differ significantly. In control line mode, on each iteration, the

_Team members: Dr. Richard Waldinger, Tom Pressburger, Dr. Steve Roach, Dr. Michael Lowry, Dr.

William Van Dalsem, Dr. Goetz Klopfer, Dr. Yehia Pdzk

I0

°ridI St'iari'bleslOridO°TIControl stretching jacobian truncation control- overlap relative cell coverage
Laws ratio error lability volume difference

kmax kll kx2 kx3 k14 k15 kle kl't kls

et_mx k21 k22 k23 k24 k25 k26 k27 k2s

Grid deta k31 ks2 kaa ka4 k35 kae ks_ kas
Actions dfar k4x k42 k43 k44 k4s k4e k47 k48

ibcja k51 k52 k$3 k54 k56 k66 kST k_8

ibejb kel k62 kea ke4 ke5 k6e ke7 kes
jmax k71 k72 k73 k74 k75 k76 k77 kTe

Figure 10 The K gain matrix represents the declarative form of the grid control laws. The rows and
columns represent the grid state variables and grid actions as defined in Fig. 9. The elements of the
table are heuristic rules which define the first-order mappings from each state variable to each action.

Section 6 details the grid generation application. Section 7 details the theory of heuristic feedback

control (HFC). Section B details the heuristic rules.

whole control line is searched for the region of greatest truncation error violation. This region

of greatest truncation error violation is refined in order to achieve the truncation error objective
set by the user. On the other hand, in surface grid marching mode, on each iteration, each of

the jJine lengths (vertical lines) are refined in order to achieve the overlap setpoint objectives

and other constraints defined by the user.

The grid controller accepts a grid schedule (Fig. 7, left) consisting of an ordered set of grid

generation tasks. It iterates through each task in the grid schedule (Fig. 11, line 1) for the
defined number of iterations of the task (Fig. 11, line 2). On each iteration, it determines the

current setpoints or reference signals (Fig. 11. line 3). For each active grid (Fig. 11, line 4),

the grid qualities of both the grid and those it interacts with (Fig. 11, line 5) are determined.

The algorithm then branches based upon the control mode in effect for each grid schedule

task (Fig. 11, line 6). The first control mode is for control line modification (Fig. 11, line 7).
Under this mode, the control line for the current grid is selected (Fig. 11, line 8). Control line

control laws are applied to determine a new control line specification for SRAP by minimizing

the difference between the grid setpoints and grid qualities (Fig. 11, line 9). The new SRAP

specifications are collected (Fig. 11, line 10). The second and third control modes are for

marching and repairing Overset surface grids (Fig. 11, line 11). They are invoked in a similar
fashion to that of the control line mode, except that now a new surface grid specification for

SURGRD is generated by the grid control laws (Fig. 11, line 12) attempting to minimize the

difference between the grid setpoints and grid qualities. The new SURGRD specifications are

also collected (Fig. 11, line 13). At the end of the current iteration (Fig. 11, line 15), all of the

SRAP specifications are executed by calls to actuate_control_lines (Fig. 11, line 16), followed

by the execution of all of the SURGRD specifications through calls to actuate_surface_grids

(Fig. 11, line 17). SRAP specifications are executed before SURGRD specifications due to
the fact that each surface grid is defined with respect to a control line.

6 Grid Control Laws: Expert System Heuristics

The grid control laws are embedded in the function calls control_line_modifications and sur-

face_grid_modifications (Fig. 11, lines 9 and 12). These functions execute the control laws
defined in Eqn. 1. The evaluation of Eqn. 1 defines the inference procedure of the expert

system.

_7(t + 1) = gz(t) (1)

11

function Grid_Controller (schedule)

1 for task in, schedule.tasks 0 do

2 for iteration in task.iterations0 do

3 reference_signals = task.reference_signals 0

4 for grid in task.grids 0 do

5 grid_qualities = sense_grid_and_dependencies(grid)
6 case control_mode

7 control_lines

8 control_line = grid.control_line0

9 control_line_spec = control_line_modifications(grid_qualities,reference_signals)

10 SRAP_specs += controlline_spec

11 surface_marching, surface_repair

12 surface_grid_spec = surface_grid_modifications(grid_qualities,reference_signals)

13 SURGRD_specs += surface_grid_spec
14 end case control_mode

15 end for grid

16 actuate_control_lines(SRAP_specs)

17 actuate_surface_grids (SURGRD_specs)
18 end for iteration

19 end for schedule
end function Grid_Controller

Figure 11 The grid control algorithm. The grid controller iteratively modifies control lines and surface
grids until user specified reference signals are met. This is accomplished by the use of Overset grid
tools SGQ, OLGQ, GRIDED, SRAP and SURGRD.

At each point in time, Eqn. 1 is solved for tT(t + 1) to provide the grid controller with the next

set of synchronous grid actions to be taken. To understand how Eqn. 1 is evaluated requires
an understanding of vectors £, 5, matrix K as well as the machinery of matrix algebra. The

elements of the vector £ define the grid qualities in the grid control domain and are formalized

as the state variable vector in Fig. 12. The elements of the vector _ define the grid actions

in the grid control domain and are formalized as the action vector in Fig. 13. The K matrix
organizes the structure of the rule space. The row headers of the K matrix ennumerate the

possible grid actions, and the column headers ennumerate the possible grid qualities (see Eqn.

2). The cartesian product of the row and columns yields the elements of the matrix. Each

element of the matrix identifies a unique state/actuator combination implemented as a function

or heuristic rule. Knowledge acquisition is performed by identifying the rows, columns and

elements of the matrix. In the grid generation domain, the K matrix consists of 56 elements:
7 actions and 8 sensors.

_/et

1_krn

Uda

tt_f =

_ia

_tib

Ujm .

ket,sr ket,nj ket,te ket,cn ket,ov ket,rv ket,cd ket,cv

kkm,sr kkm,nj kkm,te kkm,cn kkm,ov kkm,rv kkm,cd kkm,cv

kda,sr kda,nj kda,te kda,cn kda,ov kda,rv kda,cd kda,c_

kdf ,sr kdf ,nj kdy,te kd/,cn k4f ,ov kdf ,ru k4f ,cd kdf ,cv

kia,sr kia,nj kia,te kia,cn kia,ov kia,rv kia,cd kia,cv
kib,sr kib,nj kib,te kib,cn kib,ov kib,rv klb,cd kib,cv

kjm,sr kjm,nj kjm,te kjrn,cn kjra,ov kjrn,rv kjm,cd kjm,cv

x.r]
Xnj

Xte

, 1Xov

Xrv

Xcd JXcv

(2)

12

mm_

streching_ratio

jacobian
truncation_error

controllability

overlap
relative _volume

cell_difference

coverage

" Xsr q

Xnj

Xte

XcB

Xov

Try

Tcd

. Tcv

= £ state variables

Figure 12 The grid qualities vector _ which define the possible grid qualities axe formalized as the
state vector a_. The elements of vector _ correspond to the numbers in the diagram of the Figure• The
dimension of vector _ is [1 x 8].

Each element ui of _ is determined by the dot product of the kith row of K with the state

vector Z. For example, action uet, the first element of _, is defined in Eqn. 3 as the dot product
of the first row in the K matrix with the state vector.

ua = k_'t* _ (3)

Expanding Eqn. 3 yields Eqn. 4:

u,t = [k_t,,_, k,t,,_, . . . , k,t,od, k_,_][T,_, z_j, . . . , Z_d,Z_] r (4)

If the values of vector _ are numeric, and the elements of the k_t are numeric constants, then

the dot product operation will utilize the standard definitions of the mathematical functions

plus (+) and (*) as seen in Eqn. 5.

Uet = ket, sr * X sr "F ket,nj * xnj "b ket ,re * Xte q- ket,cn * Ten q- ket,ov * Xov q- ket,rv * Try -t- ket,cd * Xed -t- ket,cv * Xcv

Since all of the elements K matrix are functions or heuristic rules, the generalized dot

product operation is defined as two layers of function calls (Eqns. 6,7).

Uet : ket,s_ Xsr) q-ket,n,(Xnj) Jr ket,te(Xte) h- ket,cn(Xcn) + ket,ov(Xov) -t- ket,rv(Xrv) "_ ket,ea(xcd) q- ket,cv(Xcv)

Uet = f(ket,sr (Xsr), ket,nj (Xn¢), ket,te (Xte), ket,cn(Xcn), ket,ov (Toy), ket,rv (Try), ket,cd(Xed), ket,cv (Xcv))

To evaluate Eqn. 7, the mathematical function f is no longer interpreted as a literal sum of

product terms but now is interpreted as an abstract combination of product terms. In addition,

the mathematical functions ket,. are no longer interpreted as the product of numeric terms, but

must now are interpreted as a generalized function application with X. as the input arguments.

The generalized dot product function is constructed by recognizing that the form of the dot

product defined in Eqn. 7 is a function with sixteen arguments. The sixteen arguments are

made up of eight arguments for the grid state variables and eight function arguments for the

elements of the first row of the K matrix as can be seen in Eqn. 8.

ua = f (k,t,,r , ket,nj , ket,te , ket,cn, ket,ov , ket,rv, ket,cd, ket,cv, Tsr, Xnj , Tte , Tcn , Xov , Try, Ted, Xcv) (8)

An infinite number of function forms can fit function f. The art of the knowledge engineer

is to define those function forms appropriate to the domain. In the grid generation domain, two

genera/ized dot product function forms have been explored. The first generalized dot product

function form is implemented as a cascading conditional which ranks the grid qualities in

terms of state and setpoint criticality (Fig. 14, left). The Value of the action Uet is determined

(5)

(6)

(7)

13

-

line.length : etamx
number_h_lines : kmax

initial_spacing : deta

final_spacing : df ar

left_splay : ibcja

right_splay : ibcjb

number_v_lines : jmax

Uet

Ukrn

_da

= Udl

Ilia

Uib

Ujrn

= ff actions

Figure 13 The grid actions g which define the possible actions are formalized as the action vector _.

The elements of vector g correspond to the numbers in diagram of grid actions. The dimension of
vector _ is [1 x 7].

by selecting the action associated with the first grid quality which satisfies its state variable

predicate. The second generalized dot product function form is implemented as the minimum or

intersection operation (Fig. 14, right). The value of the action ua is determined by selecting the
intersection (or mimimum) action as suggested by each of the product terms. The tradeoffs of

generalizing the dot product are a loss of linear control law properties including controllability,

observability and stability. The benefit is the ability to leverage the linear algebra machinery
for non-linear heuristic closed-loop control domains.

6.1 Gain Matrix Elements (k.ij): Solving for uij

Each element of the K matrix encodes a local heuristic relating a single state variable to a single
action. By identifying the heuristic for each element, the local heuristics for the grid controller

expert system are systematically defined. Fig. 15 shows the pseudocode corresponding to
the value of the Uet,cv = ket,cv(Xe_) element. Note that the logic derives different actions

depending upon whether the state variable coverage (xev) is onbody, offbody, or just_offbody.

This results in a local control action Uet of increasing_line_length, decreasing_line_length or

maintaining_current_line_length respectively. All other elements of the K matrix are defined in
a similar fashion. The definitions for most elements can be found in Appendix B.

7 Heuristic Feedback Control (HFC) Theory

We must be systematic, but we should keep our systems open.

- Alfred North Whitehead, Modes of Thought

The theory of heuristic feedback control (HFC) combines the feedback properties of expert

system controllers [27, 16] with the parallel execution paths of subsumption [6]. It combines

production rules [18] of rule-based systems with linear algebra vector/matrices of modern

control theory [5]. It follows the challenge outlined in Planning and Control [20] to develop

methods of integrating traditional control and AI systems.

7.1 Define Variables for Objectives, Sensors, States and Actions

HFC leverages the methodology used in modern control theory [29] to design process controllers.
The methodology defines a fixed vocabulary of variables and relations between variables. Four

classes of vectors are required to develop process control applications. In a similar manner to

14

f(k_t._,,...,k_t xo_,...,xc_)
]* Version 1. Compute next et.*]

if x_j = negative then kl_(x,_j)

elseifxc_ = off then kxs(xcu)

elseifxc, _ 0 then k14(xc_)
elseifxo_ < 2 then kls(Xov)

elseifx_ _< .5 then klo(X_)

elseifx_ _< 1.3 then kll (x.r)

elseif previous_et exists then previous_et
elseif observed_et exists then observed_et

else et_initiaLguess

endif

iend functionf

f(k_e , ket,_v, x...... , x_)
/* Version 2. Compute next el.*/

minimum (kll (Xor),

k_3(_:,,),
kl4(Xc,,),

end f unction f

i

Figure 14 Two dot product functions for computing uet = f(ket,_r,..., ket,cv, ysr,..., Ycv) are defined.
The first instance defines a function form which orders the state variables as a cascading conditional

indicating the priority of the state variable, selecting the klj term whose state variable predicate is

the first to match. The second instance defines a function form which computes the minimum of all

contributions of klj terms.

process controller designers, closed-loop control expert system developers must exhaustively

ennumerate the vectors corresponding to objectives (_, sensors (y-'), state variables (£) and

actions (_) in the domain. For heuristic domains, variable values will be a mix of numeric

and symbolic values. To define the variables and their values, the following questions must be

answered for each domain:

• What axe the objectives in the domain, a_d possible values for each objective?

= [o(t)]

• What are the sensors in the domain, and possible values for each sensor?

= []

• What are the state variables in the domain, and possible values for each state variable?

e(t) = [xlCt)...xpCt)]

• What are the actions in the domain, and possible values for each action?

a(t) = []

7.2 Determination of the Transfer Function or Gain Matrix

The HFC control laws are determined through the definition of the mapping between the state

variables (£) and the actions (if) according to a set of objectives (r-'). This mapping, also called

the transfer function is defined by answering the following questions:

• What is the relationship between the values of state variable xi and each action _, given

objective r_?

The linear algebra form of the transfer function or gain matrix is represented in Eqn. 9.

The objectives or setpoints _" are no longer explict in Eqn. 9 but are embedded in the logic of

each kij element. The function definitions of eaz2a k_j encodes the setpoints into the logic of

the heuristic rules. Such an approach is taken in modern control theory as well as in a class of

reactive systems.

= -K£ (9)

15

Given that the dimensions of _ are [1 x m] and the dimensions of _7 are [r x 1], then the

matrix K is of dimensions [r x m]. The r • m elements of the K matrix are highlighted by the

expansion of the K in Eqn. 10.

Ul

U2

Ur

kl,1

k2,1

kr,1

kl,2 "'" kl,m

k2,2 "'" k2,m

:
..•

kr,2 •'" kr,m

Xl

x2

* :

T,m

(10)

Each kij element (Eqn. 11) must be elicited from the domain expert. To define each k_j

element the expert system designer must answer for each i and j, the following question:

• What affect will the jth state variable have upon the ith action?

• o °

u_ ki,j "" * xj (11)

Since the jth state variable and ith action each can take on a set of values, the answer to

this question is a function of the form: k_j(xj) = uij. Depending upon the types of state

variables and actuator variables, .this function can be a mathematical construct, heuristic

rules, table lookup or other mapping preserving form which follows naturally from the domain.
By systematically defining each element in the matrix a first order heuristic feedback control

system can be defined• An example from the grid generation domain can be seen in Fig. 15.

Once each kij element has been defined, the domain expert must define global heuristics
for combining the local heuristics in order to solve the equation for each u_ of _7. To define the

global heuristics of combining the local evidence the expert designer must answer for each ui

the following question:

• How will the local heuristics for the ith row of the K matrix, with respect to each xj, be
combined to define a net u_ value?

X2

Ui : ki,1 ki,2 "'" ki,p * . (12)

Xp

Each element of the actuator vector u_ can be derived via the dot product of the state
variable vector Z with ith row of the K matrix:

ui : [k_,l, k_,2 • • •ki,p-1, k_,p][Xl, x2... xp-1, xp] T (13)

Since each ki,j is a function call, this function ui is defined as the sum of product terms:

ui = ki,l (xl) + ki,2(x2) +... + ki,p(Xp) (14)

Generalizing Eqn. 14 yields the abstract dot product function:

Ui = f(ki,l•., ki,p, _gl • • • Xp) (15)

16

defrule ket,cv (Xcv)

/* Define the heuristic rule element ket,cv of the K matrix.*/

/* Coverage setpoint: total coverage*/

/* Effect of state variable coverage on action etamx */

/* When the grid goes offbody then return the last best onbody value and terminate.*/
if cv

onbody then et = et + A

off body then et = et - A

onbody_and_last_iteration_offbody then et = et
endif

end ket,cv

Figure 15 The heuristic rule definition of the k15 element for the K matrix. This element is a local grid
heuristic which captures the relationship between the grid quality coverage (xcv) and the grid action

line length (u_t).

The more general definition of the dot product illustrates that the dot product function as

defined in linear algebra is just one way of computing the value of ui. Many other function
definitions that utilize the same arguments as f, including non-linear function forms, can

be defined. These function forms could take the form of a complex conditional to capture

the priority, criticality and system state information sources, or it could take on the form
of intersection of system state information sources where it accepts a minimum action which

satisifies all components. Two such examples have been illustrated in the grid generation

domain (Fig. 14).
The use of domain specific knowledge to implement the dot product function rather than

relying upon the domain independent dot product definition of linear algebra, is an instance
of Allan Newell's and Edward Feigenbaum's insight of the fundamental tradeoff between a

problem solvers generality and its expertness. Newell states: "...there is an inverse relationship

between the generality of a method and its power" [36] (page 12). Feigenbaum identifies a "law

of nature operating that relates problem solving generality (breadth of applicability) inversely

to power (solution success..) and power directly to specificity (task-specific information)" [22]

(page 6). These principles are observed in the grid generation domain by providing powerful,

narrowly applicable domain specific dot product heuristics which yield acceptable solutions in

the grid generation domain.

7.2.1 K Matrix Extensions

As knowledge engineers start to acquire, represent and execute the expert system (via evalua-

tion of Eqn. 9), they will find that some actions cannot be defined as the additive composition
of state variable contributions. It is natural for the knowledge engineer to assume the sim-

plest possible model, namely a linear model of control, and only add in higher order terms
when nonlinearities are encountered. The process for the development of heuristic systems is

analogous to that of a mathematical modeller adding in higher order Taylor series terms when

appropriate. The K matrix can be expanded by adding additional rows to the K matrix to

represent control laws which require conjunctive evidence. The state vector Z can be expanded

by adding additional elements to the state vector Z to represent the conjunctive evidence.

17

8 Related Work: AI

HFC is a knowledge-based system defined by a set of propositions which have a truth value,

and a theory which can reason over the propositions [31, 42]. The propositions are defined over
the values of the _, _7and _*vectors. The theory which reasons over the propositions is defined

by the K matrix. At any point in time, working memory consists of propositions describing
the domain variables and their values in the domain. No accumulation of historical data is

permitted; only previous and current data are kept. The feedback control cycle of the expert

system is defined by successive iterations over a fixed sequence of tasks. These tasks define a

simple non-monotonic reasoning system, where historical information is constantly retracted
while new information is asserted (see Fig. 16).

@)

f.
O

z
o

fetch y(t)

retract y(t-1)

m assert y(t)

-- retract x(t-1)

derive x(t)

assert x(t)

retract u(t-1)
m derive u(t)

assert u(t)

execute u(t)

fetch y(t+l)

retract y(t)

assert y(t+l)

retract x(t)

derive

assert

"...

t+l
t grid controller iterations

Figure 16 A fixed sequence of tasks is executed on each iteration of the grid controller.

HFC has its roots in the development of iterative feedback closed-loop systems. Closed-

loop feedback control systems can be partitioned in conventional and AI control systems. JSrg
Miiller summarizes the commonalities and differences between conventional control and AI

control:

...the basic view of the controller as consisting of a state estimation function and a

regulation function...can be transformed [from the conventional control model] into
the AI perspective on agents and their environment...the basic difference between

the two methods are...that models [which compute] the effects of actions on the

world [are] realized by differential equations in [conventional control] and by sym-

bolic reasoning on explicitly represented aspects of the world in [AI based control]

[34] (page 12).

Norbert Wiener, who defined cybernetics as "the science of control and communication in

the animal and machine" [50] formalized the theory of feedback control. Sowa in Conceptual

Structures, critiques cybernetics as not applicable to AI symbolic methods:

Cybernetics is descended from analog control systems, but AI is based upon digital

computer programming. Because of their heritage they use different formalisms:

cybernetics uses continuous mathematics, especially calculus and differential equa-

tions; but AI uses discrete mathematics, especially symbolic logic and formal gram-

mars...Although Weiner's original definition of cybernetics claimed the entire sub-

ject matter. [43] (page 340)

18

BothM/illerandSowarejectthemethodsof conventionalcontroldueto its relianceon
continuousmathematics.Thispaperhasdemonstratedthat a carteblancherejectionof the
machineryof continousmathematicsforheuristicsystemsisnotwarranted.HFChasshown
that thelinearalgebraframeworkwhichoftenisusedto modelsetsoffirst orderdifferential
equationscanbegeneralizedto allowfor "symbolicreasoningonexplicitlyrepresentedaspects
of theworld"[34](page12).Thisisaccomplishedbydefiningqualitativemathematicaloper-
ations[48],whicharecharacterizedbysymbolicmathematicalreasoningoverfinitefields.In
additionit is accomplishedbyabstractingfromthelanguageof mathematicsto thelanguage
of setoperationswhichunderliethemathematics.Forexample,theexecutionoftheequation

= KZ is defined as a sequence of matrix dot product operations. To determine an element

of _, the dot product operation is performed with a row of the K matrix and the column of

the Z vector. The application of each dot product operation can be reduced to a fixed number

of set mapping relations between elements of the set of state variables _, elements of the set
of a row of the K matrix and elements of the set of actions g (see Fig. 17).

m m

u.1

u r

u n

m

m m

----t- xl I

---f- x2 I

_-xml

Figure 17 Systematic set mapping operations which underlie matrix dot product operations are the
foundation for heuristic feedback control (HFC).

8.1 Conventional and AI Feedback Control Systems

The theory of heuristic feedback control is an attempt to "bring cog sci and AI back to the

broader view of cognition and feedback mechanisms found in earlier psychology and cybernet-

ics" [14] (page 132).

8.1.1 Modern Control Theory

HFC utilizes the variable type definitions, the matrix equations and the matrix operations from

modern control theory [5, 38]:

x' = Ax + Bu (16)

y = cz (17)

u = Kx (18)

HFC uses matrices to represent the control knowledge of the expert system. The ease

of organization of matrices makes them attractive for knowledge representation requirements.
In addition, the use of linear algebra to develop expert systems in scientific and engineering
domains is a natural fit due to the fact that matrices and vectors are already fundamental tools

of scientists and engineers.
The K matrix is analogous to a multi-input/multi-output transfer function of frequency

based methods [32] and the gain K matrix of modern control theory [5]. The K matrix is ex-
tended to allow for rule elements and not just constant elements. These equations are extended

19

SystemName
M odernC ontr ol

Theory[5]

Featurel Feature2

Z=C-X_

Feature3

if= K£

Feature4

ExpertSystem monitoring interpretation prediction repair

Controller[27]

Mycin[18, 11] monitor diagnose identify modify

Subsumption[6] fetch_sensors activate_layers inhibit.zuppress
GridController compute

g_d_specs

fetch_points

fetch_lines

determine

grid_qualities

execute_S RAP

execute_SU RG RD

Figure 18 A comparison of closed-loop feedback control systems including traditional control as well
as expert system controllers. All of the systems share a common feedback control cycle. The systems
differ in the degree of processing of the raw sensory information into internal variables, the amount of
search utilized to determine the next actions as well as the degree of independence of parallel control
loops.

through the use of symbolic quantities as variable values, and the use of the matrix dotproduct

operations generalized from a literal sum of products to a more abstract combination of terms
written in domain specific heuristics. This paper assumes that £ is defined via the inverse of

y = Cx, namely x = C-ly. This inversion is implemented via domain specific deterministic

methods. 6 Derivation is outside of the scope of this paper (see Appendix A).

Instead of the K matrix being defined through an optimization process, K is defined by

interviewing domain experts. Knowledge acquisition for the K matrix is accomplished through

interviewing the domain experts in order to systematically identify the K matrix elements. The

use of matrices has many benefits. "The spreadsheet's visual metaphor [of the matrix] amplifies

the expert's ability to recognize and offer distinctions between the elements on the basis of the

constructs" [23] (page 82). Each element of the array is a modular piece of knowledge defining

an empirical association between a state variable and an actuator. Missing matrix elements

imply missing expert knowledge. The ability to identify missing matrix elements allows us to
remove the difficulty commonly associated with heuristic systems, namely: a "system based

upon empirical associations is more difficult to construct because the character of the knowledge
makes it necessary to extract the rules on a a case-by-case basis." [17] (page 391). Using

matrices, it is easy to support knowledge acquisition from multiple domain experts. In the grid

generation domain, three domain experts were used concurrently; each identified the rules of

separate columns of the K matrix.
Similarities exist between the matrices used by HFC and those employed by a key knowledge

acquisition tool in personal construct theory [4]. Matrices identified as repertory grids [30] are

used to scale a set of elements with respect to a given personal construct. These types of

matrices are defined as a set of similar-contrast pole assignments over triadic subsets of the
elements. Such methods should be included in HFC when defining the finite valueclass and

orderings of domain variables.

8.1.2 Early Expert Systems

Ten "generic categories of knowledge engineering applications" are defined in An Overview

of Expert Systems [27]. One of the ten categories of knowledge engineering applications is

defined as control knowledge engineering applications (CKEA). Such knowledge engineering

eSGQ and OLGQ: Jeff Onufer, Goetz Klopfer and Peter Robinson

20

applicationsarefeedbackcontrolsystemswhich"adaptivelygoverntheoverallbehaviorof a
system"[27](page15).Thisisaccomplishedbyrepeatedlyexecutingafeedbackloopdefinedas
asequenceoffoursequentialtasks:interpretation,prediction,repairandmonitoring.Common
operationbetweenthegridcontrollerandthefourCKEAtaskscanbeseenin Fig. 18.

8.1.3 Heuristic Classification and Model-Based Reasoning

In Heuristic Classification [11], Mycin is defined as an instance of the class of maintenance

cycle expert systems. This type of expert system iteratively executes four sequential tasks:

monitor, diagnose, identify and modify. Common operation between the grid controller and
the four maintenance cycle tasks can be seen in Fig. 18.

The heuristic rules [11] which comprise the elements of the K matrix of the form: if xj

then ui are instances of heuristic classification [11]. The rules draw non-hierarchical and non-
definitional inferences between elements of £ and elements of _. It is non-hierarchical because

elements of ff are not elements of the abstraction lattice of _. It is non-definitional because the

relations in K between £ and 6 do not define the attributes of £ or _.

The K matrix can be modelled as a model-based reasoning (MBR) component [25] in which

the column headers define the state variable (£) inputs to the component and the row headers

define the action (_7) outputs from the component. In MBR, the mapping between inputs and

outputs is often defined using first principles, qualitative constraints, e.g ([x] + [y] = [z])[19].

In HFC the mapping between inputs and outputs of the matrix component is defined through

table lookup. Each of the table elements is a heuristic classification rule. HFC leverages both

the heuristic classification approach of capturing empirical associations and the model-based

reasoning component paradigm. HFC views the debate of when/where to utilize heuristic

classification [11] vs. first principles qualitative constraints [17] as analogous to the debate in
mathematical modelling of when/where to utilize models defined as curve fits to empirical data

vs. utilizing models defined from first principles.

The dot product rules can be viewed as operational rule models [15]. Rule models are

"abstract descriptions of subsets of rules, built from empirical generalizations of these rules,
and are used to characterize a typical member of a subset." [15] (page 231). The integration

process required by the dot product rules abstracts not the form of each rule but the form of
the results of each rule.

8.1.4 Subsumption

The grid controller also exhibits many properties of subsumption [7]. No search through a

space of internal representations is allowed. Internal representations are allowed as long as the

internal representation is a deterministic conduit from sensing to acting. Multiple goals are

implemented as competing parallel paths of execution. Separate layers define each goal. Many

layers compete to actuate a limited set of actuators due to the fact that actuators overlap with

other goal/layers (Fig. 19). Each layer receives the required sensor information synchronously.
Actuators commands are executed synchronously, often with idempotent action, i.e. action

which maintains the current command. The definition of each layer is not implemented as

augmented finite-state machine (AFSM) with timers, but instead is implemented as heuristic

sense act rules with a global clock.

Each symbolic dot product operation can be modelled as a set of subsumption layers with

an inhibition/suppression module [6] (See Fig 19).

21

"Xnj-'_ "et'nj:ket'Xnj I" Uet'nj

Structured

Grids

Figure19 The grid controllercan be modelledasa subsumptionarchitecture.The diagram implements

the subsumption model ofu_t= Ket_.

8.2 Knowledge Acquisition

Many knowledge acquisition methods [12, 13, 26, 27, 41, 49, 51] fall short of providing the

knowledge engineer the types of knowledge to look for. Though most of these knowledge

acquisition systems model the world as a set of variables and relations between the variables

(propositional and higher order), they axe too general as to what knowledge to acquire and
represent: "the typology of knowledge sources is too general. The precise meaning of the

knowledge sources is ambiguous" [49] (page 113). In addition, these systems offer little help

in ensuring that systematic coverage of the domain knowledge is achieved. Without strategies

to identify the essential knowledge, it is impossible to define systematic knowledge elicitation

and acquisition methodologies.

The KADS (Knowledge Analysis and Design Support) philosophy states that: "a system

that has knowledge about the kinds of knowledge that it needs to acquire can exercise much

more focused control on the acquisition process" [49] (page 114). Gaines [24] identified "practi-

cal reasoning knowledge" as an instance of KADS modelling. "Practical reasoning knowledge"

specifically looks for feedback control processes in the behavior of domain experts. The grid

generation domain was found by making explicit the feedback control processes of grid users.
Gaines, however, does not link these knowledge acquisition models with the feedback control

methodology used by process control designers to develop feedback controllers. HFC links
practical reasoning feedback control knowledge with the knowledge acquisition, representation

and execution methods of process controllers [38] (Chapter 22). This methodology explicitly

models both the controller and its environment. It outlines eight stages for the development

of feedback control systems. Explicit models of the controlling and controlled process axe de-

veloped. Though the methodology was developed for process control applications, nothing in

the methodology precludes the parameters and their relations from being symbolic, qualita-

tive terms rather than quantitative, numeric terms. It is a general methodology which HFC

leverages to model human, domain expert feedback behavior. Frequency-based [32] and time-

based [5] methods can be used to implement the methodology. We have chosen the time-based

methods with its use of matrices to naturally represent multiple input/output control functions.

8.3 Concept Maps and Concept Graphs

Concept maps [1]are usefulto model hierarchicalconcepts,ranking the concepts from the

"most general,most inclusiveconcept to the most specific,leastgeneralconcept" [37](page

22

1). They can be used to model those aspects of the K matrix rules which are hierarchical

in nature. However, concept maps provide no guidance as to what concepts to look for and

provide no methods to extract a formal structure for the concept maps to reason over.
Concept graphs are defined as "a directed bipartite graph composed of concepts and rela-

tions" [43] (page 70). Concept graphs can be used to model rule elements of the K matrix,
however, the clarity of thought gained from viewing the matrix as a whole is lost.

9 Conclusions and Future Work

This paper has introduced the grid generation expert system application, as well as the theory

of heuristic feedback control (HFC) for developing such expert systems. The grid generation

system has achieved some success in the automation of Overset structured grid generation.

Much tuning of the system will be required before the system is baselined for an aerospace

design project. The introduction of adaptivity and learning into the grid controller will allow
for runtime modification of ineffective grid heuristics. The grid heuristics need to be tested on

additional and increasingly more complicated aerospace CAD design geometries. Additional

grid controller modes which interleave control line mode with surface marching mode will
address overlap issues related to disparate grid cell sizes. Additional global constraints on grid

actions such as Vinokur's function [46] need to be integrated into the K matrix evaluation

process. The utilization of additional knowledge, for example the aircraft grid script systems

[40, 35], should be incorporated into the grid controller.

The experience of using methods from modern control theory [5, 38] has helped advance
the use of process control methods in the developement of heuristic feedback control expert

systems. It provides benefits over the full knowledge lifecycle of an expert system for knowledge

acquisition, knowledge representation and knowledge execution. Modern control theory pro-
vides benefits during the knowledge acquisition phase by systematically identifying the classes

of knowledge which need to be elicited in the domain. The process of systematically exploring

all of the relationships between the grid qualities and the grid actions lead naturally to con-

sider possibilities outside the scope of normal best practices for grid users. It provides benefits

for knowledge representation of the domain by relying upon matrices and vectors to organize
classes of domain heuristic rules. Systematic coverage of knowledge is reduced to identifying

the elements of matrices. Missing matrix elements imply missing heuristics. Knowledge perfor-

mance benefits allow for constant time execution of the expert system. This is accomplished

through symbolic dot product analogs based upon on the deterministic numeric dot product

operation implemented as a fixed and constant number of rule matchings.

10 Acknowledgements

I would like to thank Dr. William Van Dalsem and Dr. Eugene Tu for having the foresight

and perseverance to fund this collaboration between artificial intelligence technologists and

computational aerodynamidsts. This work was funded under NASA Aero IT Base (519). I
would also like to thank Dr. Michael Lowry and Dr. Goetz Klopfer for their vision and support.

In addition I would like to thank Jeff Onufer, Dr. Donovan Mathias and Dr. Yehia Rizk for

their patience in explaining structured grid generation to me. In memory of Dr. Herbert Kay.

23

References

[1] R. Abrams, D. Kothe, and R. Iuli. Meaningful Learning: A Collaborative Literature
Review of Concept Mapping. www2.ucsc.edu//mlry//clr-eonceptmapping.html.

[2] J. Benek, P. Buning, and J. Steger. A 3-D Chimera Grid Embedding Technique. AIAA-

85-1523, 1985.

[3] M. J. Berger and J. Oliger. Adaptive Mesh Refinement for Hyperbolic Partial Differential

Equations. Journal of Computational Physics, 53:484-512, 1984.

[4] J. Boose and J. Bradshaw. Expertise Transfer and Complex Problems: Using AQUINAS as

a Knowledge Acquisition Workbench for Knowledge-Based Systems. International Journal
of Man-Machine Studies(26), 3-28, 1987.

[5] W. L. Brogan. Modern Control Theory. Prentice-Hall, 1982.

[6] R. Brooks. Cambrian Intelligence. The MIT Press, Cambridge, MA, 1999.

[7] R. A. Brooks. A Robust Layered Control System for a Mobile Robot. Technical Report

864, MIT, 1985.

[8] W.M. Chan. Overgrid Version 1.6. http://www.nas.nasa.gov/Main/Frontpage/Features//chimerasidebar.htrn't
2000.

[9] W. M. Chan and R. J. Oomez. Advances In Automatic Overset Grid Generation Around
Surface Discontinuities. In AIAA-g9-3303, 1999.

[10] W. M. Chan and R. L. Meakin. Advances Towards Automatic Surface Domain Decom-

position and Grid Generation For Overset Grids. In AIAA-99-3303, 1999.

[11] W. Clancey. Heuristic Classification. Artificial Intelligence, 27:289-350, 1985.

[12] W. Clancey. The Knowledge Engineer as Student: Metacognitive Bases for Asking Good

Questions. In H. Mandl and A. Lesgold, editors, Learning Issues for Intelligent 7_atoring

Systems, pages 80-113. Springer, New York, 1988.

[13] W. Clancey. The Knowledge Level Reinterpreted: Modeling of Socio-Technical Systems.

International Journal of Intelligent Systems, 8(1):33-49, 1993.

[14] W. Clancey. Situated Cognition: On Human Knowledge and Computer Representations.

Cambridge University Press, 1997.

[15] R. Davis. Interactive Transfer of Expertise: Acquisition of New Inference Rules. Artificial

Intelligence, 12:121-157, 1979.

[16] R. Davis. Reasoning from first principles in electronic troubleshooting. International
Journal of Man-Machine Studies, 19:403-423, 1983.

[17] R. Davis. Diagnostic Reasoning Based on Structure and Behavior. Artificial Intelligence,
24:347-410, 1984.

[18] R. Davis, B. Buchanan, and E. Shortliffe. Production Rules as a Representation for
Knowledge-Based Consultation Programs. In W. J. Clancey and E. H. Shortliffe, editors,

Readings in Medical Artificial Intelligence: The First Decade, pages 98-130. Addison-

Wesley, Reading, MA, 1984.

24

[19]J. de Kleer and J. S. Brown. A Qualitative Physics Based on Confluences. Artificial

Intelligence, 24:7-83, 1984.

[20] Dean and Wellman. Planning and Control. Morgan Kaufmann, first edition, 1991.

[21] P. Eiseman. Multiblock Grid Generation with Automatic Zoning. NASA Grid Generation

Conference, pages 143-162, 1995.

[22] E. Feigenbaum, B. Buchanan, and J. Lederberg. On Generality and Problem Solving: A
Case Study Involving the Dendral Program. Technical Report CS176, Stanford Computer

Science, 1971.

[23] K. Ford, F. Petry, J. Adams-Webber, and P. Chang. An Approach to Knowledge Ac-
quistion Based on the Structure of Personal Construct Systems. IEEE Transactions on

Knowledge and Data Engineering, 3(1), 1991.

[24] B. Gaines. Modeling Practical Reasoning. International Journal of Intelligent Systems,

8(1):51-70, 1993.

[25] W. Hamscher, L. Console, and J. de Kleer. Readings in Model-Based Diagnosis. Morgan

Kaufmann, San Mateo, CA, 1992.

[26] F. Hayes-Roth. Towards Benchmarks for Knowledge Systems and Their Implications for

Data Engineering. TKDE, 1(1):101-110, 1989.

[27] F. Hayes-Roth, D. A. Waterman, and D. B. Lenat. An Overview of Expert Systems. In

F. Hayes-Roth, D. A. Waterman, and D. B. Lenat, editors, Building Expert Systems, pages

3-29. Addison-Wesley, London, 1983.

[28] W. D. Henshaw. Automatic Grid Generation. Acta Numerica, pages 121-148, 1996.

[29] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal of

Basic Engineering, Transactions of the ASME, pages 35-45, 1960.

[30] G. Kelly. The Psychology of Personal Constructs. Norton, 1955.

[31] H. J. Levesque and R. J. Brachman. A Fundamental Tradeoffin Knowledge Representation
and Reasoning (Revised Version). In R. J. Brachman and H. J. Levesque, editors, Readings

in Knowledge Representation, pages 41-70. Kaufmann, Los Altos, CA, 1985.

[32] A. G. MacFarlane. b'kequency-Response Methods in Control Systems. IEEE Press, New

York, NY, 1979.

[33] R. L. Meakin. On Adaptive Refinement and Overset Structured Grids. In AIAA-97-1858,
1997.

[34] J. Muller. The Design of Intelligent Agents. Springer Verlag, 1996.

[35] S. Nash. Automating the CFD Process Using Overset Grids for a Wing/Fuselage/Nacelle

Configuration. NASA Grid Generation Conference, 1994.

[36] A. Newell. Heuristic Programming: ILL-Structured Problems. In P. S. Rosenbloom,
J. E. Laird, and A. Newell, editors, The Soar Papers: Research on Integrated Intelligence

(Volume 1), pages 3-54. MIT Press, London, 1993.

[37] J. D. Novak. The Theory Underlying Concept Maps and How To Construct Them.

http ://cmap. coginst, uwf . edu/info /.

25

[38]R. H. Perry,D. W. Green, and J. O. Maloney, editors. Perry's Chemical Engineers'
Handbook. McGraw-Hill Book Company, sixth edition, 1984.

[39] P. Robinson. Feedback To Basics. In Proceedings of the 1997 AAAI Fall Symposium on
Model-Centered Autonomous Systems, 1997.

[40] S. E. Rogers, K. Roth, S. Nash, M. D. Baker, J. P. Slotnick, M. Whitlock, and H. V. Cao.
Advances in Overset CFD Processes Applied to Subsonic High-Lift Aircraft. AIAA-2000-

4216, 20oo.

[41] M. Shaw and B. Woodward. Modeling Expert Knowledge. Knowledge Acquisition, 2(3),
1900.

[42] B. C. Smith. Prologue to "Reflection and Semantics in a Procedural Language". In R. J.

Brachman and H. J. Levesque, editors, Readings in Knowledge Representation, pages 31-

39. Kaufmann, Los Altos, CA, 1985.

[43] J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, 1984.

[44] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood. Deductive Com-

position of Astronomical Software from Subroutine Libraries. In Proceedings of the Con-

ference on Automated Deduction, 1994.

[45] N. E. Suhs, W. E. Dietz, S. E. Rogers, S. M. Nash, and J. T. Onufer. PEGASUS 5.1.

http://www.nas.nasa.gov/-rogers/pegasus/uguide.html, 2000.

[46] M. Vinokur. On One-Dimensional Stretching Functions for Finite-Difference Calculations.
Journal of Computational Physics, pages 215-234, 1983.

[47] R. Waldinger. Amphion Applied to Computational Fluid Dynamics - unpublished report,
1995.

[48] D. S. Weld and J. de Kleer, editors. Readings in Qualitative Reasoning About Physical

Systems. Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990.

[49] B. J. Wielinga, A. T. Schreiber, and J. A. Breuker. KADS: A Modelling Approach to

Knowledge Engineering. Knowledge Acquisition, 4:5-53, 1992.

[50] N. Wiener. Cybernetics or Control and Communication In the Animal and the Machine.
MIT Press, Cambridge, 1948.

[51] L. Wood and J. Ford. Structuring Interviews with Experts During Knowledge Elicitation.
International Journal of Intelligent Systems, 8(1):71-90, 1993.

26

A Grid Qualities: State Variables(Z)

Grid quality routines provide quantitative assessments of what were previously qualitative
visual assessments. Modern control theory links the observations (y-') to the state vaiables (_

through the equation _" = C_. Inversion of this equation yields Z = C-l_. The grid controller

relies on routines OLGQ, and SGQ to implement this inverse7 These programs analyze the

grid points produced by the grid generators as well as analyze the performance of the grid

generators. The operation of the programs SGQ and OLGQ are not the focus of this paper.
Eight different grid qualities are utilized by the grid controller. The eight different grid

qualities are divided into two categories: unary grid measures and binary grid measures. The

single grid measures are stretching ratio, truncation error, jacobians, coverage and controlla-

bility. The binary grid measures are overlap, relative volume and cell difference.
Stretching ratio is a measure of change of distance between any three consecutive points.

Two such measures are used by the controller, a local measure and a global measure. The local

measure is defined between any three consecutive points as the maximum ratio between the

two distances. A global stretching ratio keeps track of the minimum and maximum values as

the three point window slides over a grid line with n points.
Jacobians are a measure of how close grid lines are to crossing. When a jacobian value is

negative then grid lines have crossed. Grids with such conditions cannot be used for simulations.
Truncation error is a measure of the degree of orthogonality of a grid volume. Truncation

error can be separated into solution-induced truncation error and mesh-induced truncation
error. The truncation error grid quality is defined as the coefficient of the mesh-induced

truncation error. A global measure for the truncation error for a whole grid is determined as

the root-mean squared (RMS) point truncation error.
Controllability is defined as the difference between the grid specification as provided as

input to a grid generator, and the measure of the grids after they have been generated. It was

discovered that often the failure of the grid controller to achieve its desired results was due to

constraints imposed by the grid generator itself. The information from controllability will be

required to develop an adaptive grid controller.
Grid coverage is a measure of how much a grid covers a reference surface, covers another

grid and how much a grid is offbody. Offbody coverage occurs when a grid has been advanced
too far and it leaves the reference surface.

Overlap is a binary grid quality which measures the amount of overlapping grid cells between

a recipient and donor grids. It is a grid quality measure which when met will help ensure that

proper interpolation stencils can be defined. Overlap between recipient grid point and a donor

grid can be measured with respect to four direction donor grid boundaries: kmin, kmax, jmin

and jmax. An overlap state is defined for each of these four directions. An overlap state can
take on one of four values, namely: 1 implies no overlap, 2: not enough, 3: enough, 4: too

much.

Relative volume is a binary grid quality which measures the ratio of the volumes between

recipient and donor grid cells created from overlapping surface grid cells.

Cell di_erence is a binary grid quality which measures the ratio of the shapes between

recipient and donor grid cells created from overlapping surface grid cells. For example, the

volume of recipient and donor grid cells could be equal but the recipient and donor cells could

be of drastically different shape (i.e. cube vs. other parallelepiped).

7Jeff Onufer, Goetz Klopfer and Peter Robinson

27

B K Matrix Element Definitions

Each element of the K matrix is a function/heuristic rule which accepts a single sensor as
input and produces an action command as output. All of the grid knowledge embodied in
these heuristics was defined through interviews and queries witl_ four domal_n experts from
NASA Ames: Dr. Goetz Klopfer, Dr. Donova_ Mathias, Jeff Onufer and Dr. Yehia Rizk.

defrule kl; (sratio)

/* Effect of sratio on etamx with sratio objective of 1.3"/
if sratio

1.3 then etamx = etamx
_> 1.3 then etamx = etamx - A

endif

end kzl

defrule k21 (sratio)

/* Effect of sratio on deta with sratio objective of 1.3"/

if sratio

_< 1.3 then deta = deta
1.3 then deta ---- deta - A

endif

end k21

defrule ksl (sratio)

/* Effect of sratio on dfar with sratio objective of 1.3"/
if sratio

1.3 then dfar = dfar

1.3 then dfar = dfar -

endif

end ksl

defrule k41 (sratio)

/* Effect of sratio on kmax with sratio objective of 1.3"/

if Count ((from j _ 1 to jmax) sratio < 1.3)

<_ 50% then kmax = kma_x -I- A

50% then kmax = kmax - A

endif

end k4l

defrule k12 (jaeoblan)

/* Effect of jacobian on etamx with jacobian objective of greater than 0"/

if jacobian
<_ 0 then etamx = etamx - A

_> 0 then etamx = etamx
endif

end k12

defrule k22 (jacobian)

/* Effect of jacobian on deta with jacobian objective of greater than 0"/

/* only relevant if negative jacobian occurs near control line or kmin line*/

if jacobian
_< 0 and (k _ kmin) thenVj deta = deta -_

0 then deta ----- deta - A

endif

end k22

defrule ks2 (jacobian)

/* Effect of jacobian on dfar with jacobian objective of greater than 0"/

/* only relevant if negative jacobian occurs near kmax llne */
if jacobian

_< 0 and (k _ kmax) thenVj dfar = dfax -_
_> 0 then dfar = dfar -

endtf

end ks2

defrule k42 (jacobian)

/* Effect of jacohian on kmax with jacobian objective of 0"/

/* The only reason to change this is if there is running the suhiteration procedure*/
/* which doubles the number of points to grow the grids*/

/* then halves them after the grids are grown*/

if jacobian

<_ 0 and (smoothing ha_ failed)

t-hen krnax = kmax + A (double number of points)

28

rerun grid generator
kmax = kmax - A (halve number of points)

> 0 then kmax = kmax

endif

end k42

defrule ks2 (jacobian)

/* Effect of jacobian on ibcja (right splay) with jacobian objective of 0"/
/* If NJ near center of control line, the increase splay, else reduce splay (if constraints for offbody permit it)*/

/* The change of splay is determined by how the negative jacobian is forming near the ends of the control lines. */

/* If grid lines are spiralling outward, then splay needs to be reduced. */

/* If grid lines are crossing into the interior of the grid, then need to increase the splay. */

/* I'm not sure how the outward spirals produce negative jacobians, */

/* but these are just as undesirable as standard negative jacobians. */

if jacobian

< 0 and (j _ _) then ibcja -----ibjca + A

0 and (or (j _ jmin) (j _ jmax)) then ibcja = ibjca- A

0 and (spirals outward) then ibcja = ibjca - A

0 and (crosses into interior of grid) then ibcja = ibjca + A

> 0 then ibcja : ibcja
endif

end ks2

defrule ke2 (jacobian)

/* Effect of jacobian on ibcjb (right splay) with jacobian objective of 0"/

/* See comments for k52 for comments. */

if jacobian

< 0 and (j _ _) then ibcjb = ibcjb -F A

0 and (or (j _ jmin) (j _ jmax)) then ibcjb = ibcjb - A

0 and (spirals outward) then ibcjb = ibcjb -

_< 0 and (crosses into interior of grid) then ibcjb -- ibcjb + A

> 0 then ibcjb ---- ibcjb
endlf

end ks2

defrule kls (truncation-error)
/* Effect of truncation error on etamx with truncation error objective of .005*/

/* Truncation error is proportional to cell area which increases as etamx increases*/

if truncation-error

< .005 then etamx = etamx

.005 then etamx : etamx - A

endif

end kl3

defrule k2s (truncation-error)

/* Effect of truncation error on deta with truncation error objective of .005*/

/* Truncation error is proportional to cell area which decreases as deta increases*/
if truncation-error

< .005 then deta ---- deta

.005 then deta ---- deta

endif

end k23

defrule kss (truncation-error)

/* Effect of truncation error on dfar with truncation error objective of .005*/

/* Truncation error is proportional to ceil area which decreases as dfar increases*/
if truncation-error

__ .005 then dfar ---- dfar
> .005 then dfar = dfar

endif

end ks3

defrule k4s (truncation.error)

/* Effect of truncation error on kmax with truncation error objective of .005"/

/* Truncation error is proportional to cell area which decreases as kmax increases*/
if truncation-error

__ .005 then kmax -- kmax

> .005 then kmax -- kmax -t- A

endif

end k4s

defrule k_4 (controllability)
/* Effect of etamx controllability on etamx with controllability objective of 0"/

29

/* Relax the farfield around regions where controllability is detected

/* This is performed in grid contorller repair mode

if controllability

> 0 then etamx = etamx

= 0 and (close to regions) > 0 then etarnx = etamx -{- A
endif

end kl4

defrule k24 (controllability)

/* Effect of etamx controllability on kmax with controllability objective of 0"/

/* No effect*/
kmax = kmax

end k24

defrule k34 (controllability)

/* Effect of etamx controllability on deta with controllability objective of 0"/

/* No effect*/
deta -----deta

end kS4

defrule k44 (controllability)

/* Effect of etamx controllability on dfar with controllability objective of 0"/

/* No effect*/
dfar -- dfar

end k44

defrule k84 (controllability)

/* Effect of etamx controllability on ibcja with controllability objective of 0"/
/* No effect*/

if controllability

> 0 and (j _ jmin) then ibcja = ibjca + A

< 0 and (j _ jmin) then ibcja = ibjca- A

= 0 then ibcja = ibjca
endif

end k54

defrule ks4 (controllability)

/* Effect of etamx controllability on ibcjb with controllability objective of 0"/

/* No effect*/
if controllability

> 0 and (j _ jmax) then ibcjb ---- ibjcb + A
< 0 and (j _ jmax) then ibcjb = ibjcb - A

= 0 then ibcjb = ibjcb
endif

end ks4

defrule k15 (coverage)

/* Effect of coverage on etamx with coverage objective of total coverage*/

/* The heuristic used is to always remember the the far field distances */

/* of the last point on the body. When the grid goes off'body then return */

/* it to the last best onbody value.*/

if coverage

onbody then etamx = etamx + A

o]fbody then etamx = etamx - A

onbodyandlastiterationoffbody then etarnx = etamx
endif

end kls

de,rule k2s (coverage)

/* Effect of coverage on deta with coverage objective of total coverage*/
deta = deta

end k2s

defrule kss (coverage)

/* Effect of coverage on dfar with coverage objective of total coverage*/
dfar = dfar

end kss

defrule k4s (coverage)

/* Effect of coverage on kmaxwith coverage objective of total coverageS/
kmax ----- krnax

end k45

3O

defrule kss (coverage)

/* Effect of coverage on ibcja (right splay) with coverage objective of total coverage*/

if coverage
nottotal_coverage and notoff-bodl/left then ibcja = ibjca - A

off-bod_left then ibcja = ibjca + A

total_coverageO then ibcja = ibcja

endif

end kss

defrule ke5 (coverage)

/* Effect of coverage on ibcjb (left splay) with coverage objective of total coverage*/

if coverage
nottotal_coverage and notoff-bodyright then ibcjb ---- ibjcb - A

off_bodyright then ibcjb ---- ibjcb -t- A

total_coverageO then ibcjb : ibcjb
endif

end ks5

defrule kls (overlap)

/* Effect of overlap on etamx with overlap objective overlap state 3*/

/* The heuristic used is to always remember the the far field distances */

/* of the last point on the body. When.the grid goes offbody then return */

/* it to the last best onbody value.*/

if overlap
1 or 2 then etamx ---- etamx -[- A

3 or 4 then etamx _-- etamx

endif

end kls

defrule k2e (overlap, relative_volume)

/* Effect of overlap and relative_volume on deta with overlap objective overlap state 3*/

if overlap
2 then if relative-volume

<_ 1 and (k _> _-_) then deta ---- deta - A

<_ 1 and (k <_ _._t) then deta ---- deta _- A
_- 1 then deta -- deta

endif

I or 3 or 4 then deta ---- deta

endif

end k26

defrule kse (overlap, relative_volume)

/* Effect of overlap and relative_volume on dfar with overlap objective overlap state 3*/

if overlap
2 then if relative_volume

land(k L_Ithendfar----dfar+ t<_ 1 and (k _ then dfar dfar -

---- 1 then dfar -_ dfar

endif

1 or 3 or 4 then dfar ---- dfar

endif

end k3e

defrule k4e (overlap)

/* Effect of overlap on kmax with overlap objective overlap state 3*/

/* If most farfield points have too little overlap increase kmax to increase overlap*/

if Count ((from j _ 1 to jmax) overlap ---- 2)
50% then kmax _ kmax -{-

endif

/* If most farfield points have too much overlap decrease kmax to increase overlap*/

if Count ((from j ----1 to jmax) overlap = 4)

50% then kmax ----kmax - A

endif

end k4o

defrule kse (overlap)

/* Effect of overlap on ibcja with overlap objective overlap state 3*/
if overlap

/* splay out*/
1 or 2 then ibcj& _ ibcja - A

/* keep splay constant*/
3 then ibcja ---- ibcja

/* splay in*/

31

4 then ibcja = ibcja + A

endif

end kse

defrule ke6 (overlap)

/* Effect of overlap on ibcjb with overlap objective overlap state 3*/

if overlap

/* splay out*/
1 or 2 then ibcjb _ ibcjb - A

/* keep splay constant*/
3 then ibcjb = ibcjb

/* splay in*/

4 then ihcjb ---- ibcjb -[- A
endif

end kee

32

C Users Manual

The grid controller is a program written in Fortran90. It is executed by a command at the

shell prompt.

7.controller controller.inp

7.

7.more controller.inp

GRID CONTROLLER INPUT FILE

1 GRID SCHEDULE ELEMENT 1

2,. 005 OBJECTIVES

20,0,0,1,0 # of iterations, TYPE OF CONTROL

2,2,2,1,1,1,1,0 GRID STATES
3 GRID CONTROL LINE SOURCES

2 GRID SCHEDULE ELEREBT 2

2,. 005 OBJECTIVES

2O,l,0,O,O # of iterations, TYPE OF CONTROL

1,1,0,O,O,0,0,O GRID STITES
3 GRID CONTROL LINE SOURCES

C.1 Input File Specification

The input file controller.inp is organized as a grid schedule. At each step of the grid schedule

several types of information are specified:

• OBJECTIVES: A set of grid objectives are defined for the active grids. These objectives

are in terms of the single and binary grid qualities which the controller must achieve and

maintain for each active grid. The user can specify the following objectives: number of

cell overlap, maximum truncation error, stretching ratio, and jacobians.

• NUMBER OF ITERATIONS: The user defines the maximum number of feedback iter-

ations the grid controller executes. Keep in mind that the grid controller can terminate

earlier if the grid objectives are met or the grid controller reaches a local optima.

• TYPE OF CONTROL: The controller can be executed in one of four modes (per iter-

ation). Modes can be used in conjunction with each other. Each mode is specified as
0: off, or 1: on. The first is overlap control which invokes SURGRD to achieve overlap

grid qualities. The second mode repairs regions of low overlap grid qualities with sets

of grids. The third mode modifies control lines to achieve truncation error grid quali-
ties. The fourth is the optimizer control mode, (where the grid controller utilizes SRAP)

and is used as a subroutine by an optimizer. It requires an additional input file called

optimizer.inp.

• GRID STATE: For each grid, a grid state is defined. 0 implies not active, not present, 1

implies active, present and 2 implies not active, present. The grids which will be modified

have grid state 1. The grids which will be used to determine grid qualities have grid states
1 and2.

• GRID CONTROL LINE SOURCES - define initial state source. These sources can be

pointers to grids, pointers to control lines with grid specifications or pointers to grid
heuristics from which a grid can be generated. There are four values: synthesize grid

spec from heuristics (0), use actual grid as starting point due to no grid spec (1), and

grid spec from file (2) and use control line from pristine subdirectory (3). The controller

will look in subdirectory $current_dir/pristine_grids/for the initial grids.

33

C.2 Outfile Directory Structure

The result of the execution is a subdirectory which contains a log of the grid controller op-

erations as well additional subdirectories for grids, specifications and the results of analysis

routines run during the execution of the grid controller. The output of the grid controller

is found in the subdirectory $current_dir/rw/. Under this subdirectory several files and
subdirectories can be found.

• $current_dir/run/gridcontrollerlog: This filecontainsthe output of the grid con-

troller.Each iterationof the controllerishighlightedinthe log as well as the reasoning

processesthe grid controlleruses to determine itsactions.

• $current_dir/run/sl: The resultsof each grid schedule element are captured in sub-

directorieslabelledsl,s2 ...sn, where the nth grid schedule step isrecorded in the sn

subdirectory.Each sn containssixsubdirectoriesunder it.Each ofthese subdirectories

contains the labelledcontentsforeach iterationrun by the grid controller.

• $current_dir/run/sl/grid_histories_id: Contains the controllinesforalliterations.

• $current_dir/run/sl/grid_histories_2d: Contains thesurfacegridsforalliterations.

• $current_dir/run/sl/grid_histories_3d: Contains the volume gridsforalliterations

requiredto compute the singleand overlapgrid qualities.

• $current_dir/run/sl/sgq_histories: Contains the singlegrid qualitiesfor allgrids
foralliterations.

• $current_dir/run/s I/olgq_histories: Contains the overlapgridqualitiesforallgrids

foralliterations.

• $current_dir/run/sl/spec_histories: Contains the SRAP and SURGRD input spec-

ificationssynthesizedby the gridcontrollerforallgrids,controllinesforalliterations.

34

Form Approved
REPORT DOCUMENTATION PAGE OMBNo.07"04-0188

Public reporling burden for this collection of information is estimated to average 1 hour per response, including the time tor reviewing instructions, searching existing data sources,

I gathering and maintaining the data needed, end completing and reviewing the collection of information. Send Comments regarding this burden estimate or any other aspect of this

I collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Redorts, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188}, Washington, DC 20503.

1. AGENCYUSEONLY(LeavebIank)12" REPORTDATENOvember2001 I 3" REPORTTYPEANDDATEsCOVEREDTechnicalMemorandum
i

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Automatic Overset Grid Generation with Heuristic Feedback

Control

6. AUTHOR(S) 505-510

Peter I. Robinson

I II

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Ames Research Center

Moffett Field, CA 94035-1000

9. SPONSORING/MONITORING AGENCY NAMEtS) AND ADDRESStES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration

Washington, DC 20546-0001 NASA/TM-2001-210931

11. SUPPLI=MENTARY NOTES

Point of Contact: Peter Robinson, Ames Research Center, MS 269-1, Moffett Field, CA 94035-1000

(650) 604-3513

'12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -- Unlimited

Subject Category 59 Distribution: Standard

Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

14. SUBJECT TERMS

automatic grid generation, Overset grids, heuristic feedback control, expert

systems, modem control theory, knowledge acquisition, knowledge execution

17. SECURITY CLASSIFICATION =18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

39
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

i

13. ABSTRACT (Maximum 200 words)

An advancing front grid generation system for structured Overset grids is presented which automatically

modifies Overset structured surface grids and control lines until user-specified grid qualities are achieved.

The system is demonstrated on two examples: the first refines a space shuttle fuselage control line until

global truncation error is achieved; the second advances, from control lines, the space shuttle orbiter fuselage

top and fuselage side surface grids until proper overlap is achieved. Surface grids are generated in minutes

for complex geometries. The system is implemented as a heuristic feedback control (HFC) expert system

which iteratively modifies the input specifications for Overset control line and surface grids. It is developed

as an extension of modem control theory, production rules systems and subsumption architectures. The

methodology provides benefits over the full knowledge lifecycle of an expert system for knowledge acquisi-

tion, knowledge representation and knowledge execution. The vector/matrix framework of modem control

theory systematically acquires and represents expert system knowledge. Missing matrix elements imply

missing expert knowledge. The execution of the expert system knowledge is performed through symbolic

execution of the matrix algebra equations of modem control theory. The dot product operation of matrix

algebra is generalized for heuristic symbolic terms. Constant time execution is guaranteed.

